

Y

. Set C. C. Scar Manager and Press

# **CORRIDOR STUDY**

CITY OF CHARLOTTESVILLE AND ALBEMARLE COUNTY

### TECHNICAL MEMORANDUM FOR ENVIRONMENTAL IMPACT STATEMENT

# AIR QUALITY ANALYSIS

6029-002-122, PE 100

U.S. Department of Transportation Federal Highway Administration and Virginia Department of Transportation

April 1990

### AIR QUALITY ANALYSIS

ľ

### TECHNICAL MEMORANDUM FOR ENVIRONMENTAL IMPACT STATEMENT

### ROUTE 29 CORRIDOR STUDY

| STATE PRO   | JECT: | 6029-0 | 002-12 | 22, PE | 100      |
|-------------|-------|--------|--------|--------|----------|
| FEDERAL PRO | JECT: | F-     |        |        |          |
|             | FROM: | ROUTE  | 250    |        |          |
|             | то:   | NORTH  | FORK   | RIVAN  | NA RIVER |

# U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

**REGION 3** 

AND

VIRGINIA DEPARTMENT OF TRANSPORTATION

### TABLE OF CONTENTS

1

2

6

10

11

27

31

32

I. INTRODUCTION

ľ

- II. AIR POLLUTANTS AND THEIR SOURCES
- III. PROJECT DESCRIPTION
- IV. EXISTING REGIONAL AIR QUALITY
- **V. STUDY PROCEDURES** 
  - A. General Approach
  - B. Background Carbon Monoxide
  - C. Microscale Dispersion Analysis
    - 1. Model Used
    - 2. Emission Factors
    - 3. Meteorological Conditions
    - 4. Analysis Šites
    - 5. Traffic Data
- VI. RESULTS
- VII. CONSTRUCTION IMPACTS
- VIII. CONCLUSION

### FIGURES

7

8

19

1. Project Location

P

Ĵ

Î

I

- 2. Project Location
- 3. Carbon Monoxide Analysis Sites

### TABLES

| 1. | National Ambient Air Quality Standards                                              | 3    |
|----|-------------------------------------------------------------------------------------|------|
| 2. | Observed Carbon Monoxide Concentrations at Selected Virginia<br>Monitoring Stations | 13   |
| 3. | Carbon Monoxide Dispersion Analysis Sites                                           | . 17 |
| 4. | Existing (1987) Traffic Data                                                        | 21   |
| 5. | Year 2000 Traffic Data                                                              | 22   |
| 6. | Year 2010 Traffic Data                                                              | 24   |
| 7. | % ADT by Hour for Eight Highest Volume Hours<br>(By Facility Type)                  | 26   |
| 8. | Peak Carbon Monoxide Concentrations Under Worst<br>Meteorological Conditions        | 29   |

### INTRODUCTION

Ι.

Federal Regulations which implement the Clean Air Act of 1970, amended in 1977, and the National Environmental Policy Act of 1969, require that air quality be considered in the preparation of environmental documents for federally funded highways. The Clean Air Act also required that air quality standards be established for criteria pollutants and that all states implement plans to attain and maintain these standards. The U.S. Environmental Protection Agency has promulgated National Ambient Air Quality Standards (NAAQS) for six atmospheric pollutants: Carbon monoxide, ozone, nitrogen dioxide, sulfur dioxide, particulates, and lead. Transportation projects should be designed so that they do not cause violations of the NAAQS. Therefore, effects on air quality are among the many types of impacts that must be addressed when evaluating highway projects.

In this report, the air quality impacts for the U.S. Route 29 Corridor Study are addressed. The Corridor Study identified and evaluated transportation alternatives for improving traffic conditions on U.S. Route 29 in Albemarle County and the City of Charlottesville. Air pollutants are described along with their sources and allowable ambient atmospheric concentrations. Existing regional air quality is described. An assessment of the project's effects on air quality is presented with special regard to changes in carbon monoxide concentrations predicted with a microscale dispersion analysis. A qualitative discussion of construction impacts to air quality is provided. Finally, conclusions are presented regarding the project's effects on attainment and maintenance of the NAAQS.

### II. AIR POLLUTANTS AND THEIR SOURCES

National Ambient Air Quality Standards, published by the Environmental Protection Agency, are listed in Table 1. These national standards have been adopted by the State Air Pollution Control Board as state standards. Primary ambient air quality standards define the levels of air quality necessary to protect the public health with an adequate margin of safety. Secondary standards define levels of air quality necessary to prevent any degradation or harm to the total environment.

The <u>Virginia Ambient Air Quality Data Report 1988</u>, gives the following descriptions of pollutants for which the National Ambient Air Quality Standards were developed:

"TOTAL SUSPENDED PARTICULATES are solids, non-volatile liquids, dust, smoke, pollen, and crystals small enough to be suspended in the air, and result from fossil fuel combustion, industrial processes, fugitive dust (wind and erosion) and photochemical reactions. Rainfall is the major source of removal. Interactions of particulates, sunlight, and moisture can result in haze. Particles contribute to the formation of clouds, and emission of large numbers of particulates can, in some instances, result in local increase in cloud formation and possible precipitation. Particulate matter soils materials and may cause respiratory irritation and material corrosion either by its direct actions or by serving as a carrier of damaging substances absorbed by it."

<u>"PM<sub>10</sub></u> Particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers  $(PM_{10})$  is that portion of total suspended particulate that has the capability to penetrate the thoracic region of the human respiratory system. In addition to health effects, particles in this size range can impair visibility, have an effect on climate, and contribute to acidic dry deposition."

# TABLE 1

Ì

1

Í

Ĵ

# NATIONAL AMBIENT AIR QUALITY STANDARDS

| <u>Pollu</u>                                  | <u>tant</u>                                                                                                                              | Primary S                                                   | tandard                                  | Secondary           | Standard   |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|---------------------|------------|
|                                               |                                                                                                                                          | ug/m <sup>3</sup>                                           | ppm                                      | ug/m <sup>3</sup>   | ppm        |
| SUSPE                                         | NDED PARTICULATE****<br>annual geometric mean<br>24-hour                                                                                 | 75<br>260*                                                  |                                          | 60**<br>150*        |            |
| CARBO                                         | N MONOXIDE<br>8-hour concentration<br>1-hour concentration                                                                               |                                                             | 9.0*<br>35.0*                            | same a              | s primary  |
| SULFU                                         | R DIOXIDE<br>annual arithmetic mean<br>24-hour concentration<br>3-hour concentration                                                     | 80<br>365*                                                  | 0.03<br>0.14*                            | 1300*               | 0.5*       |
| NITRO                                         | GEN DIOXIDE<br>annual arithmetic mean                                                                                                    | 100                                                         | 0.05                                     | same a              | is primary |
| OZONE                                         | 1-hour concentration                                                                                                                     | 235***                                                      | 0.12***                                  | same a              | us primary |
| LEAD                                          | quarterly arithmetic mean                                                                                                                | 1.5                                                         |                                          | same a              | is primary |
| PM <sub>10</sub>                              | annual expected<br>arithmetic mean<br>24-hour concentration                                                                              | 50<br>150****                                               |                                          | same a              | as primary |
| ug/m <sup>3</sup><br>ppm<br>**<br>***<br>**** | <pre>= parts per million Not to be exceeded more th A guide for assessing the Not to be exceeded more th No more than one expected</pre> | an once a ye<br>achievement<br>an 1 day per<br>exceedance p | of 24-hour st<br>year (3 year<br>er year | andards<br>average) |            |

"<u>CARBON MONOXIDE</u> is produced by incomplete combustion of carbon compounds, principally in internal combustion engines. Concentrations in the vicinity of heavily traveled highways are much higher than ambient concentrations more than 100 meters from any highway. Carbon monoxide is not an irritant, and has little or no effect on plants or materials; however, it reacts in the bloodstream to deprive the heart and brain of oxygen. Moderate concentrations significantly reduce brain function and high concentrations can be lethal."

"<u>SULFUR DIOXIDE (SO</u>) results from combustion processes (mainly burning of fossil fuels containing sulfur compounds), refining of petroleum, manufacture of sulfuric acid, and smelting of ore containing sulfur. SO<sub>2</sub> causes chlorosis in plant leaves and in moist air forms acids that damage structural materials. Their irritating effects in the respiratory tract are magnified by high particulate levels. Once in the atmosphere, some sulfur dioxide can be oxidized (either photochemically or in the presence of a catalyst) to form SO<sub>3</sub> (sulfur trioxide). With water vapor, SO<sub>3</sub> is converted to sulfuric acid mist. Other basic oxides combine with SO<sub>3</sub> to form surface aerosols. These compounds can be transported large distances and fall back to earth as acid rain."

"<u>NITROGEN DIOXIDE (NO<sub>2</sub>)</u> (a secondary derivative of atmospheric nitric oxide), is formed when combustion temperatures are extremely high as in the burning of coal, oil, gas, and gasoline, and has been clearly established as exerting detrimental effects on human health and welfare. NO<sub>2</sub> in high concentrations can cause impairment of dark adaptation, increase airway resistance and respiratory rate, and enhance susceptibility to respiratory infections."

"<u>OZONE  $(0_3)$ </u> is formed by a complex series of reactions among nitrogen oxides and certain organic compounds under the influence of solar ultraviolet radiation (sunlight). Ozone shows a very strong diurnal (daily) and seasonal (April to October) cyclical character. Ozone injures vegetation, has adverse effects on materials (rubber and fabrics) and is a pulmonary irritant that affects the respiratory mucous membranes, lung tissues, and respiratory functions."

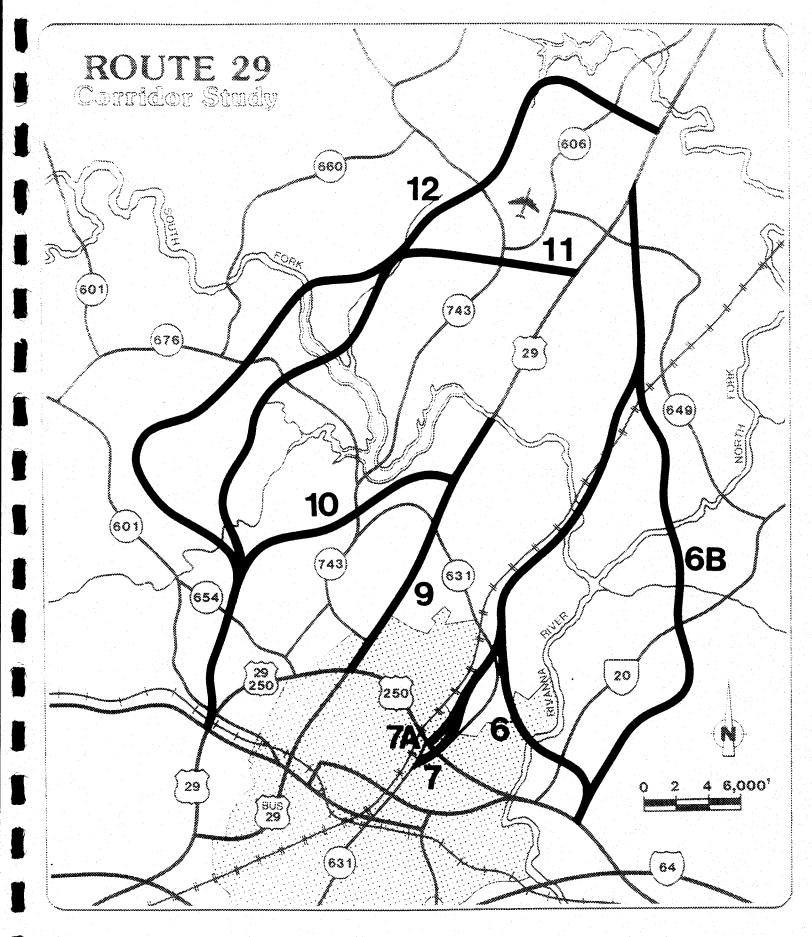
"<u>LEAD</u> is emitted into the atmosphere by vehicles burning leaded fuel and by certain industries. Particles of airborne lead range between 0.1 to 5.0 microns in diameter. Particle size and shape are important in helping to determine the deposition and suspension of lead in the atmosphere, as well as retention and absorption of lead in human beings. Children are particularly susceptible to the adverse effects of lead which can interfere with the blood-forming system, the nervous system, and the renal system, and can affect the normal functions of the reproduction and cardiovascular systems."

Motor vehicles emit all of the above pollutants except ozone. Ozone can be formed photochemically in the atmosphere from precursors emitted by motor vehicles. According to the State Air Pollution Control Board's <u>Emission</u> <u>Inventory for the year 1985</u>, automobiles are responsible for the following percentages of manmade emissions in Virginia: Carbon monoxide - 78.3%, nitrogen oxides - 48.6%, particulates - 24.1%, sulfur dioxide - 3.4%, volatile organic compounds (mostly hydrocarbons which, when combined photochemically with nitrogen oxides, form ozone) - 51.6%.

The <u>Inventory</u> shows that the automotive percentages for Albemarle County are somewhat higher than for the state as a whole: Carbon monoxide - 86.9%, nitrogen oxides - 72.2%, particulates - 36.2%, volatile organic compounds -71.4%. This is probably due to a lower intensity of industrial development in Albemarle County than in other parts of Virginia.

Burning of leaded fuels in automobiles is still the major source of atmospheric lead both statewide and in Albemarle County. However, increasing use of unleaded fuels is effectively reducing motor vehicle emissions of this pollutant.

### III. PROJECT DESCRIPTION


U.S. Route 29 north of Charlottesville is currently a four-lane divided highway with at-grade, signalized intersections. The signal system is synchronized to provide progressive traffic movement. The existing right-ofway varies but is generally 165 to 180 feet wide. The median is nominally 55 to 60 feet wide although it is narrower at intersections where left turn lanes have been added.

Commercial and residential growth in the area have caused increased traffic volumes on Route 29 which, in turn, have resulted in congested conditions and travel delays during peak traffic periods. These problems led to initiation of the Route 29 Corridor Study.

The Route 29 Corridor Study was undertaken to identify and evaluate transportation alternatives to improve traffic conditions along the Route 29 Corridor in Charlottesville and Albemarle County. Figure 1 shows the project location within the state while Figure 2 shows the study area and the proposed candidate build alternatives. The initial phases of the study in late 1987 and early 1988 identified a large number of potential highway corridors in the study area. Through a process of comparison, refinement, and public participation, the potential alignments were screened using factors such as traffic, social and natural environmental impacts, engineering, and costs. The alternatives remaining after the screening process are the candidate build alternatives which are discussed in detail in the Environmental Impact Statement. The candidate build alternatives include six new location bypass alternatives within the median



# Figure No. 1



# **Project Location**

of existing Route 29. In addition to the candidate build alternatives, a nobuild alternative is being considered. However, it is not strictly a no-build alternative since it would involve upgrading existing Route 29 to provide a sixlane facility.

The proposed new location alternatives feature four 12-foot lanes, a graded median 84 feet wide, and a limited access right-of-way 300 feet wide. The expressway alternative features four 12-foot express lanes in the existing median separated from six 12-foot local lanes by concrete barriers. Opposing lanes on the expressway would be separated by a concrete median barrier. Expressway entrance and exit would be accomplished by slip ramps at various intervals.

### IV. EXISTING REGIONAL AIR QUALITY

In accordance with the 1977 Clean Air Act Amendments, the State Air Pollution Control Board developed the current State Implementation Plan (SIP) for Virginia. The SIP outlines control strategies, compliance schedules, surveillance schedules, and source review programs to attain and maintain the National Ambient Air Quality Standards. Contained in the SIP are "attainment" and "nonattainment" designations for each pollutant within the seven air quality control regions in Virginia. For areas designated "nonattainment", the SIP may contain transportation control measures and inspection and maintenance measures for reducing pollutant concentrations to "attainment" levels. The Clean Air Act and Federal Highway Administration policy require that projects conform with the SIP.

Albemarle County is in the Virginia Department of Air Pollution Control's Region IV, Northeastern Virginia. Air quality in the region is in compliance with the National Ambient Air Quality Standards. The region has therefore been given attainment status in Virginia's SIP approved by the U.S. Environmental Protection Agency. The SIP contains no transportation control measures for the region nor are there any inspection and maintenance programs required.

### V. <u>STUDY PROCEDURES</u>

### A. <u>General Approach</u>

A microscale dispersion analysis of carbon monoxide emissions was used to assess the impacts of the project on air quality. As shown in Section II, carbon monoxide is the predominant pollutant associated with motor vehicles in Albemarle County. Its highest concentrations are found near highways. Further, carbon monoxide is a stable gas for which atmospheric concentrations can be accurately estimated with computer dispersion models.

Concentrations of other pollutants, such as nitrogen oxides and ozone, with high correlations to motor vehicle emissions involve complex chemical reactions and atmospheric transport. There are no models available to accurately predict their concentrations at a microscale level. These pollutants must be analyzed on a large regional scale and are addressed at a system planning level as part of the State Implementation Plan.

With the increasing use of unleaded gasoline and lower levels of lead in leaded gasoline, lead standards are not expected to be violated on any project. Consequently, Federal Highway Administration guidelines recommend that lead emissions not be analyzed.

Since motor vehicles contribute very little to regional levels of sulfur dioxide and particulates, these pollutants have not been analyzed.

Carbon monoxide concentrations were analyzed for the base year (1987), an interim year (2000), and the design year (2010). Using a computer model, carbon monoxide concentrations due to highway vehicles were calculated at selected sites along the proposed alternates. These concentrations were then added to background carbon monoxide concentrations and compared to the NAAQS of 35 parts per million for one hour and 9 parts per million for eight hours. A "worst case" approach was used in the evaluation. That is, site locations and model inputs such as traffic volumes, speeds, and meteorological conditions were selected so that the highest possible concentrations would be calculated.

### B. Background Carbon Monoxide

Ambient atmospheric carbon monoxide concentrations consist of background concentrations plus contributions from local sources such as highways. Background concentrations are due to carbon monoxide emissions from within and outside the community and remain fairly constant across the region. They are a function of land use type and density and transportation-related activity. Ambient carbon monoxide concentrations vary due to specific localized sources.

The Virginia Department of Air Pollution Control monitors carbon monoxide concentrations at various locations across the state. However, there is no carbon monoxide monitoring station in the Charlottesville area. Table 2 shows the maximum and second highest observations for 1-hour and 8-hour carbon monoxide concentrations at other locations.

### TABLE 2

### OBSERVED CARBON MONOXIDE CONCENTRATIONS AT SELECTED VIRGINIA MONITORING STATIONS

|              | Parts per Mi | llion 1-hour<br>2nd | Parts per Milli |                       |
|--------------|--------------|---------------------|-----------------|-----------------------|
|              | maximum      | highest             | maximum         | 2nd<br><u>highest</u> |
| Vinton       | 5.1          | <b>4.4</b>          | 3.2             | 2.8                   |
| Richmond     | 8.2          | 7.9                 | 5.2             | 4.2                   |
| Newport News | 11.4         | 8.8                 | 4.2             | 3.7                   |
| Norfolk      | 12.7         | 12.7                | 9.9             | 5.6                   |
| VA Beach     | 7.0          | 6.1                 | 4.8             | 3.7                   |

Source:

### <u>Virginia Ambient Air Quality Data Report 1988</u> Virginia Department of Air Pollution Control

The National Ambient Air Quality Standards for CO are not to be exceeded more than once per year. Therefore, for a worst case analysis, the second highest carbon monoxide concentrations are considered to represent background concentrations. As seen in the table, cities with highly developed urban areas and large populations have higher background carbon monoxide concentrations than those in less intensely developed areas. The site in the City of Vinton has characteristics most similar to the Charlottesville/Albemarle area.

The U.S. Environmental Protection Agency and the Federal Highway Administration recommend that, in rural areas, background concentrations of one part per million be used for both one-hour and eight-hour analysis periods. Other Environmental Protection Agency guidance suggests that one-hour background of five parts per million and eight-hour background of two parts per million may be appropriate for less rural areas. (<u>Guidelines for Air Quality Maintenance</u> <u>Planning and Analysis Volume 9: Evaluating Indirect Sources</u>).

For purposes of this study, background concentrations of six parts per million for one hour and three parts per million for eight hours were assumed. The Virginia Department of Transportation, with the approval of the Federal Highway Administration, routinely uses these values for air quality studies in areas where monitoring data is not available. These values are considered reasonable as they result in conservative estimates of total carbon monoxide concentrations.

### C. <u>Microscale Dispersion Analysis</u>

### 1. <u>Model Used</u>

Atmospheric concentrations of CO resulting from motor vehicle emissions from each of the proposed project alternatives were calculated using VACAL 3. VACAL 3 is a microcomputer program that calculates CO concentrations within 300 feet of a roadway. It was developed by the Virginia Department of Transportation from the Federal Highway Administration's Mobile 3/CALINE 3 Graphic Assessment Procedure. The underlying basis of the program is the Gaussian diffusion equation which employs a mixing zone concept to characterize pollutant dispersion along a line source such as a roadway. The program incorporates mobile source emission factors and meteorological conditions. The user inputs the years for which calculations are desired, peak one-hour and eight-hour traffic volumes, speeds, and the number of lanes. The program then calculates the one-hour and eight-hour CO concentrations. The calculations include the background concentrations of 6 parts per million and 3 parts per million for 1 and 8 hours respectively. In making the calculations, the program assumes level terrain. This eliminates the influence of intervening topography and gives more conservative values. A source length of 0.5 kilometers (1640 feet) is assumed in the program. Source lengths greater than this have very little effect on the outcome of the calculations.

### 2. Emission Factors

The Mobile 3 Emission Factors used in the VACAL 3 program were developed by the U.S. Environmental Protection Agency (EPA). These factors were published in EPA's "Mobile Source Emission Factors", June, 1985. These factors reflect the Clean Air Act Amendment Standards under the Federal New Car Emissions Program. Factors include national average or default values with respect to vehicle age, percentage of vehicles by type, and annual travel. The percentages of hot and cold starts were set at normal default values: 27.3% hot transient vehicle miles traveled by catalyst-equipped vehicles and 20.6% cold transient vehicle miles traveled by both catalyst and noncatalyst vehicles.

### 3. <u>Meteorological Conditions</u>

The VACAL 3 program incorporates meteorological conditions that would promote CO concentrations. These conditions include:

Stability Class D

- Low wind speed of one meter per second which inhibits turbulence and mixing.
- Low wind angle of 10 degrees which reduces dispersion away from the road and increases concentrations along the road.
- Average temperature of 30 degrees Fahrenheit for the coldest month in Virginia based on National Oceanic and Atmospheric Administration 30-year averages. Vehicular emissions of CO are higher during colder weather.

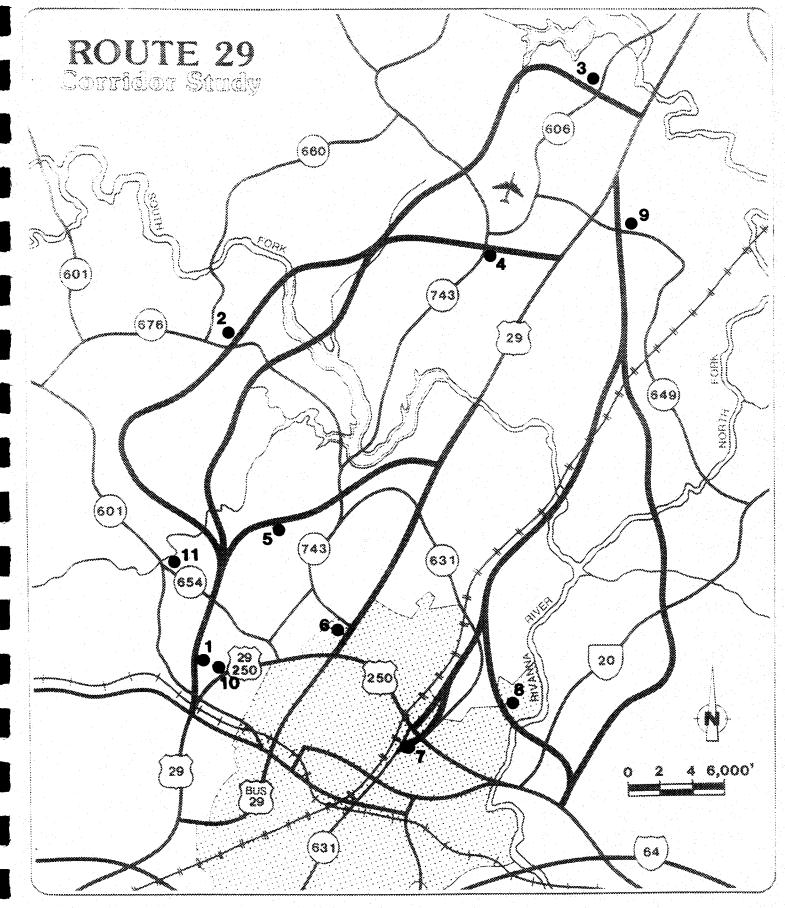
### 4. <u>Analysis Sites</u>

To obtain "worst case" conditions, representative sites were selected at locations where the highest carbon monoxide concentrations could be expected and where the general public has access or where outdoor activities are likely to occur. In general, the sites are located near proposed right of way lines on roadway sections with highest peak-hour traffic volumes. Since parks and schools have a high degree of public use, several sites were selected in or near parks and school playgrounds along the alternate alignments. In addition, secondary sites were selected at locations where local roads beyond the project limits would experience substantial increases (more than 20%) in traffic volumes as a result of the project. Eleven sites described in Table 3 and located as shown on Figure 3 were evaluated.

# TABLE 3

# CARBON MONOXIDE MICROSCALE ANALYSIS SITES

| <u>Site #</u> | Location                                                                                                                              | <u>Areas Represented</u>                                                                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 160 feet right (east) of<br>station 546 approximately 10<br>feet outside proposed right of<br>way near St. Anne's-Belfield<br>School. | Areas on both sides of alter-<br>nates 11 and 12 from Route 250<br>to Route 676 and areas on both<br>sides of alternate 10 from Route<br>250 to Barracks Road (Route<br>654). |
| 2             | 180 feet left (west) of station<br>837 behind dwelling in Clear-<br>view Knolls subdivision.                                          | Areas on both sides of alternate<br>12 from Route 676 to Miller Road<br>(Route 743).                                                                                          |
| 3             | 155 feet left (west) of station<br>1124 in side yard of dwelling<br>in Lake Acres subdivision.                                        | Areas on both sides of alternate<br>12 from Miller Road (Route 743)<br>to Route 29.                                                                                           |
| <b>4</b>      | 160 feet right (east) of<br>station 931 in churchyard at<br>Pleasant Grove Baptist Church.                                            | Areas on both sides of alternate<br>11 from Route 676 to Route 29.                                                                                                            |
| 5             | 240 feet right (east) of<br>station 653 in play area at<br>Mary Greer Elementary School.                                              | Areas along both sides of alter-<br>nate 10 from Barracks Road to<br>Route 29.                                                                                                |
| 6             | 110 feet left (west) of station<br>108 at Zanece Restaurant just<br>outside proposed right of way.                                    | Areas along both sides of Route<br>29 for the base case and<br>expressway alternatives.                                                                                       |
| 7             | 34 feet east of centerline of<br>McIntire Road at McIntire<br>tennis courts.                                                          | Areas along both sides of<br>McIntire Road and alternates 7<br>and 7A from Route 250 to Rio<br>Road (Route 631).                                                              |
| 8             | 155 feet right (east) of<br>station 381 on green at Pen<br>Park Golf Course approximately<br>5 feet outside proposed right<br>of way. | Areas along both sides of<br>alternate 6 from Route 250 to<br>Rio Road Interchange.                                                                                           |
| 9             | 165 feet right (east) of<br>station 704 + 50 in churchyard<br>at Mount Ephraim Pentecostal<br>Church.                                 | Areas along both sides of<br>alternate 6B from Route 250 to<br>Route 29 and both sides of<br>alternates 6 and 7 from Rio Road<br>to Route 29.                                 |
|               |                                                                                                                                       |                                                                                                                                                                               |


A secondary site located approximately 5 feet outside the right-of-way of Route 250 Bypass near St. Anne's-Belfield School.

10

11

A secondary site located approximately 5 feet outside the right-of-way of Barracks Road (Route 654) approximately 2000 feet west of Colthurst subdivision. Areas on both sides of Route 250 Bypass where higher traffic volumes would result from construction of the expressway alternative.

Areas on both sides of Barracks Road where higher traffic volumes would result from construction of Alternates 10, 11, or 12.



# Carbon Monoxide Analysis Sites

### 5. <u>Traffic Data</u>

The VACAL 3 program calculates CO concentrations based on traffic volumes and speeds. The one-hour concentrations are calculated from peak hour volumes and speeds. The eight-hour concentrations are calculated from the average hourly volume and speed for the eight highest volume hours of the day. Data are required for existing conditions, an interim year, and the design year.

For this analysis, existing (1987) traffic volumes were taken from information developed by the Virginia Department of Transportation. Interim year (2000) and design year (2010) traffic data were developed by COMSIS, Inc. in concert with travel forecasts and levels of service analyses. Table 4 shows the existing average daily traffic volume (ADT), the peak hour traffic volume, travel speed during the peak hour, and the percentages of automobiles and trucks for Route 29 and other road segments for which CO calculations were made. Tables 5 and 6 show similar data for the year 2000 and 2010 for all of the alternatives.

The highest eight-hour traffic volumes were determined by taking counts on selected representative existing roads, determining the percentages the highest eight hours comprised of the total daily count, and applying those percentages to existing and forecast average daily traffic volumes on the alternatives. For example, if the highest eight hours comprised 53% of the total traffic, 53% of the ADT was divided by eight to obtain the eight-hour average hourly volume. The average speed for the eight hour period was assumed to be the same as the peak hour speed. This may be very conservative since peak hour speeds should be lower than the eight-hour average. Table 7 shows the % ADT by hour for the eight highest volume hours by roadway type. TABLE 4

# EXISTING (1987) TRAFFIC DATA

| ROUTE         | FROM            | TO             | %LDV | %LDT %HDT | %HDT   | ADT   | PHT  | PHS |
|---------------|-----------------|----------------|------|-----------|--------|-------|------|-----|
|               |                 |                |      |           |        |       |      |     |
| U.S. 29 N     | 250 Bypass      | Rio Road       | 94   | -         | G      | 50680 | 6082 | 40  |
| U.S. 29 N     | Rio Road        | S Fork Rivanna | 94   | 1         | S      | 25800 | 3096 | 40  |
| U.S. 29 N     | S Fork Rivanna  | Airport Road   | 94   | -         | 2      | 23970 | 2876 | 22  |
| U.S. 29 N     | Airport Road    | N Fork Rivanna | 94   |           | ß      | 25976 | 3117 | 55  |
| 250 Bypass    | Barracks Road   | 250 Bypass     | 94   | 1         | ß      | 18342 | 2201 | 22  |
| Barracks Road | Colthurst Drive | Garth Road     | 94   |           | IJ     | 5553  | 666  | 55  |
| McIntire Road | 250 Bypass      | Harris Street  | 94   |           | ى<br>م | 16645 | 1997 | 30  |
|               |                 |                |      |           |        |       |      |     |

% LDV = Light Duty Vehicles (Autos)

% LDT = Light Duty Trucks

% HDT = Heavy Duty Trucks

ADT = Average Daily Traffic

PHT = Peak Hour Traffic (12% of ADT)

PHS = Peak Hour Speed

TABLE 5 YEAR 2000 TRAFFIC DATA

|   | ROUTE                  | FROM                                | TO                          | ZLDV       | ZLDT   | ZHDT | ADT   | PHT  | PHS |
|---|------------------------|-------------------------------------|-----------------------------|------------|--------|------|-------|------|-----|
|   | NO BUILD ALTER         | NATIVE                              |                             |            |        |      |       |      |     |
|   | US 29N                 | 250 BYPASS                          | HYDRAULIC RD                | 94         | 1      | 5    | 61100 | 7332 | 36  |
|   | US 29N                 | SPERRY DR.                          | GREENBRIER DR.              | 94         | 1      | 5    | 54900 | 6588 | 37  |
|   | US 29N                 | RIO RD.                             | WOODBROOK DR.               | 94         | 1      | 5    | 44800 | 5376 | 39  |
|   | 250 BYPASS             | BARRACKS RD.                        | 250 BUSINESS                | 94         | 1      | 5    | 35600 | 4272 | 55  |
|   | BARRACKS RD.           | COLTHURST DR.                       | GARTH RD.                   | 94         | 1      | 5    | 5700  | 684  | 55  |
|   | MCINTIRE RD.           | 250 BYPASS                          | HARRIS ST.                  | 94         | 1      | 5    | 25200 | 3025 | 35  |
| • | EXPRESSWAY ALT         | ERNATIVE                            |                             |            |        |      |       |      |     |
|   | EXPRESSNAY             | 250 BYPASS                          | HYDRAULIC RD.               | 91         | 1      | 8    | 14900 | 1788 | 55  |
|   | EXPRESSWAY             | SPERRY DR.                          | GREENBRIER DR.              | 91         | 1      | 8    | 34900 | 4188 | 55  |
|   | EXPRESSWAY             | RIO RD.                             | WOODBROOK DR.               | 91         | 1      | 8    | 31100 | 3732 | 55  |
|   | US 29N                 | 250 BYPASS                          | HYDRAULIC RD.               | 94         | 1      | 5    | 52500 | 6300 | 38  |
|   | US 29N                 | SPERRY DR.                          | GREENBRIER DR.              | 94         | 1      | 5    | 29300 | 3516 | 40  |
|   | US 29N                 | RIO RD.                             | WOODBROOK DR.               | 94         | 1      | 5    | 21000 | 2520 | 40  |
|   | 250 BYPASS             | BARRACKS RD.                        | 250 BUSINESS                | 94         | 1.1.1  | 5    | 36700 | 4404 | 55  |
|   | BARRACKS RD.           | COLTHURST DR.                       | GARTH RD.                   | 94         | ī      | 5    | 5600  | 672  | 55  |
|   |                        |                                     |                             |            |        |      |       |      |     |
|   | ALTERNATIVE 6          |                                     |                             |            |        |      |       |      |     |
|   | ALT 6                  | US 29N                              | SR 643                      | 91         | 1      | 8    | 15900 | 1908 | 55  |
|   | ALT 6                  | SR 643                              | INT. AT RID                 | 91         | 1      | 8    | 17900 | 2148 | 55  |
|   | ALT 6                  | INT. AT RIO                         | 250 BYPASS                  | 91         | 1      | 8    | 8900  | 1068 | 55  |
|   | US 29N                 | 250 BYPASS                          | HYDRAULIC RD.               | 94         | 1      | 5    | 59800 | 7176 | 36  |
|   | US 29N                 | SPERRY DR.                          | GREENBRIAR DR.              | .94        | 1      | 5    | 53200 | 6384 | 37  |
|   | US 29N                 | RIO RD.                             | WOODBDROOK DR.              | 94         | 1      | 5    | 40800 | 4896 | 39  |
|   | ALTERNATIVE 68         | n de la constant.<br>En la constant |                             |            |        |      |       |      |     |
|   | ALT 6B                 | US 29N                              | SR 643                      | 91         | 1      | 8    | 16300 | 1956 | 55  |
|   | ALT 6B                 | SR 643                              | US 20                       | 91         | 1      | 8    | 3500  | 420  | 55  |
|   | ALT 6B                 | US 20                               | 250 BYPASS                  | 91         | 1      | 8    | 2700  | 324  | 55  |
|   | US 29N                 | 250 BYPASS                          | HYDRAULIC RD.               | 94         | 1      | 5    | 59100 | 7092 | 36  |
|   | US 29N                 | SPERRY DR.                          | GREENBRIER DR.              | 94         | 1      | 5    | 52500 | 6300 | 38  |
|   | US 29N                 | RIO RD.                             | WOODBROOK DR.               | 94         | 1      | 5    | 40900 | 4908 | 39  |
|   | ALTERNATIVE 7          |                                     |                             |            |        |      |       |      |     |
|   | ALT 7                  | US 29N                              | SR 643                      | 91         | 1      | 8    | 16000 | 1920 | 55  |
|   | ALT 7                  | SR 643                              | RIO RD.                     | 91         | 1      | 8    | 17800 | 2136 | 55  |
|   | ALT 7                  | RIO RD.                             | 250 BYPASS                  | 91         | 1      | 8    | 29700 | 3564 | 55  |
|   | ALT 7                  | 250 BYPASS                          | MCINTIRE RD.                | 91         | 1      | 8    | 44100 | 5292 | 55  |
|   |                        | 250 BYPASS                          | HYDRAULIC RD.               | 94         | 1      | 5    | 58100 | 6972 | 36  |
|   | US 29N                 | SPERRY DR.                          |                             | 94         | 1      | 5    | 52200 | 6264 | 38  |
|   | US 29N                 |                                     | GREENBRIER DR.              |            |        | 5    | 40500 | 4860 | 39  |
|   | US 29N<br>MCINTIRE RD. | RID RD.<br>250 BYPASS               | WOODBROOK DR.<br>HARRIS ST. | 94<br>94   | 1<br>1 | 5    | 34050 | 4086 | 35  |
|   |                        |                                     |                             |            |        |      |       |      |     |
|   | ALTERNATIVE 74         |                                     |                             | - <b>-</b> |        |      |       | 1070 |     |
|   | ALT 7A                 | US 29N                              | SR 643                      | 91         | 1      | 8    | 15600 | 1872 | 55  |
|   | ALT 7A                 | SR 643                              | RIO RD.                     | 91         | 1      | 8    | 17400 | 2088 | 55  |
|   | ALT 7A                 | RIO RD.                             | 250 BYPASS                  | 91         | 1      | 8    | 27600 | 3312 | 55  |
|   | US 29N                 | 250 BYPASS                          | HYDRAULIC RD.               | 94         | 1      | 5    | 60000 | 7200 | 36  |
|   | US 29N                 | SPERRY DR.                          | GREENBRIER DR.              |            | 1      | 5    | 53500 | 6420 | 37  |
|   | US 29N                 | RIO RD.                             | WOODBROOK DR.               | 94         | 1      | 5    | 40900 | 4908 | 39  |
|   | MCINTIRE ROAD          | 250 BYPASS                          | HARRIS ST.                  | 94         | 1      | 5    | 25800 | 3421 | 35  |

TABLE 5 (CONT)

| ALTERNATIVE 10  |                  |                 |         |       |   |       |      |      |
|-----------------|------------------|-----------------|---------|-------|---|-------|------|------|
| ALT 10          | US 29N           | SR 743          | 91      | 1     | 8 | 13400 | 1608 | 55   |
| ALT 10          | SR 743           | SR 601-BARRACKS | 91      | 1     | 8 | 12900 | 1548 | 55   |
| ALT 10          | SR 601-BARRACKS  |                 | 91      | 1     | 8 | 13500 | 1620 | 55 - |
| US 29N          | 250 BYPASS       | HYDRAULIC RD.   | 94      | 1     | 5 | 52100 | 6252 | 38   |
| US 29N          | SPERRY DR.       | GREENBRIER DR.  | 94      | 1     | 5 | 47000 | 5640 | 38   |
| US 29N          | RIO RD.          | WOODBROOK DR.   | 94      | 1     | 5 | 34200 | 4104 | 40   |
| 250 BYPASS      | BARRACKS RD.     | 250 BUS         | 94      | 1     | 5 | 23000 | 2760 | 55   |
|                 | COLTHURST DR.    | GARTH RD.       | 94      | 1     | 5 | 8300  | 996  | 55   |
|                 |                  |                 |         |       |   |       |      |      |
| ALTERNATIVE 11  |                  |                 |         |       |   |       |      |      |
| ALT 11          | US 29N           | SR 743          | 91      | 1     | 8 | 14900 | 1788 | 55   |
| ALT 11          | SR 743           | SR 676          | 91      | 1     | 8 | 9600  | 1152 | 55   |
| ALT 11          | SR 676           | SR 601-BARRACKS | 91      | 1     | 8 | 8600  | 1032 | 55   |
| ALT 11          | SR 601-BARRACKS  | 250 BYPASS      | 91      | 1     | 8 | 10800 | 1296 | 55   |
| US 29N          | 250 BYPASS       | HYDRAULIC RD.   | 94      | 1     | 5 | 54300 | 6516 | 37   |
| US 29N          | SPERRY DR.       | GREENBRIER DR.  | 94      | 1     | 5 | 49200 | 5904 | 38   |
| US 29N          | RIO RD.          | WOODBROOK DR.   | 94      | 1     | 5 | 39200 | 4704 | 39   |
| 250 BYPASS      | BARRACKS RD.     | 250 BUS         | 94      | 1     | 5 | 26600 | 3192 | 55   |
| BARRACKS RD.    | COLTHURST DR.    | GARTH RD.       | 94      | 1     | 5 | 7100  | 852  | 55   |
|                 |                  |                 |         |       |   |       |      |      |
| ALTERNATIVE 12  |                  |                 |         |       |   |       |      |      |
| ALT 12          | US 29N           | SR 743          | 91      | . 1   | 8 | 8600  | 1032 | 55   |
| ALT 12          | SR 743           | SR 686          | 91      | 1     | 8 | 10700 | 1284 | 55   |
| ALT 12          | SR 676           | SR 601-BARRACKS | 91      | 1     | 8 | 7300  | 878  | 55   |
| ALT 12          | SR 601-BARRACKS  | 250 BYPASS      | 91      | 1     | 8 | 9900  | 1188 | 55   |
|                 | 250 BYPASS       | HYDRAULIC RD.   | 94      | 1     | 5 | 55400 | 6648 | 37   |
| US 29N          | SPERRY DR.       | GREENBRIER DR.  | 94      | 1     | 5 | 50600 | 6072 | 38   |
| US 29N          | RIO RD.          | WOODBROOK DR.   | 94      | 1     | 5 | 39500 | 4740 | 39   |
|                 | BARRACKS RD.     | 250 BUS         | 94      | 1 1 1 | 5 | 29200 | 3504 | 55   |
| BARRACKS RD     | COLTHURST RD.    | GARTH RD.       | 94      | 1     | 5 | 7100  | 852  | 55   |
|                 |                  |                 |         |       |   |       |      |      |
|                 | GHT DUTY VEHICLE |                 |         |       |   |       |      |      |
| XLDT=PERCENT LI | GHT DUTY TRUCKS  | (2-AXLE 6 TIRE; | 3-AXLE) |       |   |       |      |      |

XHDV=PERCENT HEAVY DUTY VEHICLES ADT=AVERAGE DAILY TRAFFIC PHT=PEAK HOUR TRAFFIC (12% OF ADT) PHS=PEAK HOUR SPEED (MILES PER HOUR)

# TABLE 6YEAR 2010 TRAFFIC DATA

I

| ROUTE          | FROM          | TO                                    | XLDV     | XLDT    | XHDT | 2010 ADT | PHT     | PHS |
|----------------|---------------|---------------------------------------|----------|---------|------|----------|---------|-----|
| NO BUILD ALTER | NATIVE        |                                       |          |         |      |          |         |     |
| US 29N         | 250 BYPASS    | HYDRAULIC RD.                         | 94       | 1       | 5    | 64700    | 7764    | 35  |
| US 29N         | SPERRY DR.    | GREENBRIER DR.                        | 94       | 1       | 5    | 61000    | 7320    | 36  |
| US 29N         | RIO RD.       | WOODBROOK DR.                         | 94       | i       | 5    | 52100    | 6252    | 38  |
| 250 BYPASS     | BARRACKS RD.  | 250 BYPASS                            | 94       | 1       | 5    | 37900    |         |     |
|                |               |                                       |          |         |      |          | 4548    | 55  |
| BARRACKS RD.   | COLTHURST DR. | GARTH RD.                             | 94       | 1       | 5    | 7600     | 912     | 55  |
| MCINTIRE RD.   | 250 BYPASS    | HARRIS ST.                            | 94       | 1       | 5    | 33600    | 4032    | 35  |
| MILLER ROAD    | RT. 606       | RT. 643                               | 94       | 1       | 5    | 13600    | 1632    | 55  |
| EXPRESSWAY ALT | PDNATTUP      |                                       |          |         |      |          |         |     |
| EXPRESSWAY     |               | IIVADAULTO DO                         | 01       | 4       | 0 .  | 10000    | 0050    |     |
|                | 250 BYPASS    | HYDRAULIC RD.                         | 91       | 1       | 8    | 19600    | 2352    | 55  |
| EXPRESSWAY     | SPERRY DR.    | GREENBRIER DR.                        | 91       | 1       | 8    | 43200    | 5184    | 55  |
| EXPRESSWAY     | RIO RD.       | WOODBROOK DR.                         | 91       | 1       | 8    | 35500    | 4260    | 55  |
| US 29N         | 250 BYPASS    | HYDRAULIC RD.                         | 94       | 1       | 5    | 55600    | 6672    | 37  |
| US 29N         | SPERRY DR.    | GREENBRIER DR.                        | 94       | 1       | 5    | 30100    | 3612    | 40  |
| US 29N         | RIO RD.       | WOODBROOK DR.                         | 94       | 5 i - 1 | 5    | 26400    | 3168    | 40  |
| 250 BYPASS     | BARRACKS RD.  | 250 BYPASS                            | 94       | 1       | 5    | 45900    | 5508    | 55  |
| BARRACKS RD.   | COLTHURST DR. | GARTH RD.                             | 94       |         | 5    | 7400     |         | 55  |
| DARRAUND ND.   | CODINORSI DA. | GARIN RD.                             | 54       | 1       | Ð    | 1400     | 888     | 22  |
| ALTERNATIVE 6  |               |                                       |          |         |      |          |         |     |
| ALT 6          | US 29N        | SR 643                                | 91       | 1       | 8    | 22300    | 2676    | 55  |
| ALT 6          | SR 643        | INT AT RIO                            | 91       | i       | 8    | 25000    | 3000    | 55  |
| ALT 6          | INT AT RIO    | 250 BYPASS                            | 91       | 1       | 8    | 13400    | 1608    | 55  |
|                |               |                                       |          |         |      |          |         |     |
| US 29N         | 250 BYPASS    | HYDRAULIC RD.                         | 94       | 1       | 5    | 63500    | 7620    | 35  |
| US 29N         | SPERRY DR.    | GREENBRIER DR.                        | 94       | 1       | 5    | 58900    | 7068    | 36  |
| US 29N         | RIO RD.       | WOODBROOK DR.                         | 94       | 1       | 5    | 47000    | 5640    | 38  |
| ALTERNATIVE 6B |               |                                       |          |         |      |          |         |     |
|                |               | CD 010                                | 01       | 4 -     | •    | 00000    | 0.070   | EE  |
| ALT 6B         | US 29N        | SR 643                                | 91       | 1       | 8    | 22300    | 2676    | 55  |
| ALT 6B         | SR 643        | US 20                                 | 91       | 1       | 8    | 5400     | 648     | 55  |
| ALT 6B         | US 20         | 250 BYPASS                            | 91       | 1       | 8    | 5000     | 600     | 55  |
| US 29N         | 250 BYPASS    | HYDRAULIC RD.                         | 94       | 1       | 5    | 62700    | 7524    | 35  |
| US 29N         | SPERRY DR.    | GREENBRIER DR.                        | 94       | 1       | 5    | 58400    | 7008    | 36  |
| US 29N         | RIO RD.       | WOODBROOK DR.                         | 94       | 1       | 5    | 50100    | 6012    | 38  |
|                |               |                                       | ••       | -       |      |          |         |     |
| ALTERNATIVE 7  |               |                                       |          |         |      |          |         |     |
| ALT 7          | US 29N        | SR 643                                | 91       | 1       | 8    | 23200    | 2784    | 55  |
| ALT 7          | SR 643        | RIO RD.                               | 91       | 1       | 8    | 24200    | 2904    | 55  |
| ALT 7          | RIO RD.       | 250 BYPASS                            | 91       |         | 8    | 36400    | 4368    | 55  |
| ALT 7          | 250 BYPASS    | MCINTIRE RD.                          | Q1       |         | 8    | 50600    | 6072    | 54  |
| US 29N         | 250 BYPASS    | HYDRAULIC RD.                         | 91<br>94 | 1       | 5    | 62000    | 7440    | 36  |
| US 29N         |               |                                       | 34       | . 1     |      |          |         |     |
|                | SPERRY DR.    | GREENBRIER DR.                        |          | 1       | 5    | 58300    | 6996    | 36  |
| US 29N         | RIO RD.       | WOODBROOK DR.                         |          | 1       | 5    | 47200    | 5664    | 38  |
| MCINTIRE RD.   | 250 BYPASS    | HARRIS ST.                            | 94       | 1       | 5    | 45400    | 5448    | 35  |
| ALTERNATIVE 7A |               |                                       |          |         |      |          |         |     |
| ALT 7A         | US 29N        | SR 643                                | 91       | 1       | 8    | 22700    | 2724    | 55  |
| ALT 7A         | SR 643        | RIO RD.                               | 01       | 1       | 8    | 23400    | 2808    | 55  |
|                |               |                                       |          |         |      |          |         |     |
| ALT 7A         | RIO RD.       | 250 BYPASS                            | 91       | 1       | 8    | 33900    | 4068    | 55  |
| US 29N         | 250 BYPASS    | HYDRAULIC RD.                         | 94       | 1       | 5 5  | 64000    | 7680    | 35  |
| US 29N         | SPERRY DR.    | GREENBRIER DR.                        |          | 1       | 5    | 59600    | 7152    | 36  |
| US 29N         | RIO RD.       | WOODBROOK DR.                         | 94       | 1       | 5    | 47800    | 5736    | 38  |
| MCINTIRE RD.   | 250 BYPASS    | HARRIS ST.                            | 94       | 1       | 5    | 34400    | 4130    | 35  |
|                |               | · · · · · · · · · · · · · · · · · · · |          |         |      |          | 1.19.20 |     |

TABLE 6 (CONT)

| ALTERNATIVE 10                        |                  |                 |    |    |        |     |       |      |              |  |
|---------------------------------------|------------------|-----------------|----|----|--------|-----|-------|------|--------------|--|
| ALT 10                                | US 29N           | SR 743          | 91 | 1  |        | 8   | 17400 | 2088 | 55           |  |
| ALT 10                                | SR 743           | SR 601-BARRACKS | 91 | 1  |        | 8   | 17900 | 2148 | 55           |  |
| ALT 10                                | SR 601-BARRACKS  | 250 BYPASS      | 91 | 1  |        | 8   | 17900 | 2148 | 55           |  |
| US 29N                                | 250 BYPASS       | HYDRAULIC RD.   | 94 | 1  |        | 5   | 54100 | 6492 | 37           |  |
| US 29N                                | SPERRY DR.       | GREENBRIER DR.  | 94 | 1  |        | 5   | 50100 | 6012 | 38           |  |
| US 29N                                | RIO RD.          | WOODBROOK DR.   | 94 | 1  | -<br>- | 5   | 38100 | 4572 | 39           |  |
| 250 BYPASS                            | BARRACKS RD.     | 250 BUSINESS    | 94 | 1  |        | 5   | 24500 | 2940 | 55           |  |
| BARRACKS RD.                          | COLTHURST DR.    | GARTH RD.       | 94 | 1  |        | 5   | 11000 | 1320 | 55           |  |
|                                       |                  |                 |    |    |        |     |       |      |              |  |
| ALTERNATIVE 11                        |                  |                 |    |    |        |     |       |      |              |  |
| ALT 11                                | US 29N           | SR 743          | 91 | 1  |        | 8   | 19300 | 2316 | 55           |  |
| ALT 11                                | SR 743           | SR 676          | 91 | 1  |        | 8   | 14200 | 1704 | 55           |  |
| ALT 11                                | SR 676           | SR 601-BARRACKS |    | 1  |        | 8 - | 12200 | 1464 | 55           |  |
| ALT 11                                | SR 601-BARRACKS  |                 | 91 | 1  |        | 8   | 14600 | 1752 | 55           |  |
| US 29N                                | 250 BYPASS       | HYDRAULIC RD.   | 94 | 1  |        | 5   | 57300 | 6876 | 37           |  |
| US 29N                                | SPERRY DR.       | GREENBRIER DR.  | 94 | 1  |        | 5   | 53200 | 6384 | 37           |  |
| US 29N                                | RIO RD.          | WOODBROOK DR.   | 94 | 1  |        | 5   | 46900 | 5628 | 38           |  |
| 250 BYPASS                            | BARRACKS RD.     | 250 BUSINESS    | 94 | 1  |        | 5   | 28300 | 3396 | 55           |  |
| BARRACKS RD.                          | COLTHURST DR.    | GARTH RD.       | 94 | 1  |        | 5   | 9500  | 1140 | 55           |  |
| MILLER RD.                            | RT.606           | RT. 643         | 94 | 1  |        | 5.  | 9200  | 1104 | 55           |  |
| · · · · · · · · · · · · · · · · · · · |                  |                 |    |    |        |     |       |      |              |  |
| ALTERNATIVE 12                        |                  |                 |    |    |        | _   |       |      | ана с.<br>—— |  |
| ALT 12                                | US 29N           | SR 743          | 91 | 1  |        | 8   | 11400 | 1368 | 55           |  |
| ALT 12                                | SR 743           | SR 676          | 91 | 1  |        | 8   | 15100 | 1812 | 55           |  |
| ALT 12                                | SR 676           | SR 601-BARRACKS |    | .1 |        | 8:  | 9500  | 1140 | 55           |  |
| ALT 12                                | SR 601-BARRACKS  |                 | 91 | 1  |        | 8   | 12600 | 1512 | 55           |  |
| US 29N                                | 250 BYPASS       | HYDRAULIC RD.   | 94 | 1  |        | 5   | 57300 | 6876 | 37           |  |
| US 29N                                | SPERRY DR.       | GREENBRIER DR.  | 94 | 1  |        | 5   | 53200 | 6384 | 37           |  |
| US 29N                                | RIO RD.          | WOODBROOK DR.   | 94 | 1  |        | 5   | 46900 | 5628 | 38           |  |
| 250 BYPASS                            | BARRACKS RD.     | 250 BUSINESS    | 94 | 1  |        | 5   | 31100 | 3732 | 55           |  |
| BARRACKS RD.                          | COLTHURST DR.    | GARTH RD.       | 94 | 1  |        | 5   | 9400  | 1128 | 55           |  |
| AT NU NONADIS                         |                  | 0. (1100.0.)    |    |    |        |     |       |      |              |  |
| ALUVEPKKUKNT L                        | IGHT DUTY VRHICL | KS (AUTUS)      |    |    |        |     |       |      |              |  |

XLDV=PERCENT LIGHT DUTY VEHICLES (AUTOS) XLDT=PERCENT LIGHT DUTY TRUCKS (2-AXLE 6 TIRE; 3-AXLE) XHDV=PERCENT HEAVY DUTY VEHICLES ADT=AVERAGE DAILY TRAFFIC PHT=PEAK HOUR TRAFFIC (12% OF ADT) PHS=PEAK HOUR SPEED (MILES PER HOUR)

Table 7

A364

%ADT BY HOUR FOR THE 8 HIGHEST VOLUME HOURS (BY FACILITY TYPE)

US 29 (Principal Arterial)

|         |     |      | SR 20 | )N (Min  | or Arte | rial)   |          |           |                                          |       |      | 05 /                       | CY (PF1) | ncipat  | Arteria |         |      |
|---------|-----|------|-------|----------|---------|---------|----------|-----------|------------------------------------------|-------|------|----------------------------|----------|---------|---------|---------|------|
|         |     |      |       |          |         |         | % of     |           |                                          |       |      |                            |          |         |         |         |      |
|         |     |      |       |          | Total   | Ave.    | Total    | % of      |                                          |       |      |                            |          |         |         | % of    |      |
| Time    | Mon | Tues | Wed   | Thurs    | /hour   | /hour   | 8 Hours  | Day       | Time                                     | e Mon | Tuen |                            | Thurs    | Total   | Ave.    | Total   | % of |
|         |     |      |       |          |         |         |          |           | 1108                                     | e Mon | Tues | Wed                        | Thurs    | /hour   | /hour   | 8 hours | Day  |
| 7-8     | 260 | 343  | 312   | 330      | 1245    | 311     |          |           | 6-7                                      | 1017  | 979  | 1030                       | 1081     | 4107    | 1027    |         |      |
| 8-9     | 177 | 220  | 228   | 226      |         | 213     |          |           | 7-8                                      | 1319  | 1280 | 1222                       | 1365     | 5186    | 1297    |         |      |
| 9-10    | 152 | 131  | 146   | 124      | 553     | 138     |          |           | 8-9                                      | 1234  | 1223 | 1198                       | 1175     | 4830    | 1208    |         |      |
| 10-11   | 152 | 147  | 119   | 146      | 564     | 141     |          |           | 9-10                                     | 1010  | 902  | 926                        | 989      | 3827    | 957     |         |      |
| 11a-12p | 180 | 141  | 137   | 120      | 578     | 145     | 9%       | 5%        | 10-11                                    | 1012  | 898  | 865                        | 951      | 3726    | 932     |         |      |
| 12-1    | 177 | 161  | 147   | 146      | 631     | 158     | 10%      | 5%        | 11a-12p                                  | 1089  | 929  | 966                        | 1045     | 4029    | 1007    |         |      |
| 1-2     | 147 | 165  | 158   | 156      | 626     | 157     | 10%      | 5%<br>5%  | 12-1                                     | 1466  | 1311 | 1308                       | 1458     | 5543    | 1386    | 12%     | 6%   |
| 2-3     | 172 | 182  | 157   | 171      | 682     | 171     | 11%      | 6%        | 1-2                                      | 1488  | 1269 | 1259                       | 1365     | 5381    | 1345    | 12%     | 6%   |
| 3-4     | 194 | 162  | 206   | 195      | 757     | 189     | 12%      | 6%        | 2-3                                      | 1410  | 1256 | 1184                       | 1278     | 5128    | 1282    | 11%     | 6%   |
| 4-5     | 304 | 303  | 296   | 269      | 1172    | 293     | 18%      | 10%       | 3-4                                      | 1481  | 1397 | 1387                       | 1445     | 5710    | 1428    | 12%     | 7%   |
| 5-6     | 323 | 282  | 292   | 303      | 1200    | 300     | 19%      | 10%       | 4-5                                      | 1801  | 1725 | 1674                       | 1837     | 7037    | 1759    | 15%     | 8%   |
| 6-7     | 204 | 196  | 195   | 227      | 822     | 206     | 13%      | 7%        | 5-6                                      | 1835  | 1780 | 1746                       | 1745     | 7106    | 1777    | 16%     | 8%   |
|         |     |      |       |          | ULL     | 200     | 1.576    | 1 /6      | 6-7                                      | 1434  | 1423 | 1448                       | 1525     | 5830    | 1458    | 13%     | 7%   |
|         |     |      |       |          | 8 Hrs   | 1617    |          |           | 7-8                                      | 1199  | 1071 | 1149                       | 1287     | 4706    | 1177    | 10%     | 5%   |
|         |     |      |       |          | 24 Hr   | 2984    |          |           | 8-9                                      | 1044  | 1022 | 1079                       | 1027     | 4172    | 1043    |         |      |
|         |     |      |       |          |         | 2704    |          |           | 9-10                                     | 788   | 783  | 874                        | 878      | 3323    | 831     |         |      |
|         |     |      |       |          |         |         |          |           |                                          |       |      |                            |          |         |         |         |      |
|         |     |      |       |          |         |         |          |           |                                          |       |      |                            |          | 8 Hr    | 11441   |         |      |
|         |     |      |       |          |         |         |          |           |                                          |       |      |                            |          | 24 Hr   |         |         |      |
|         |     | SR   | 743-H | vdraul i | c Rd. ( | Minor A | rterial) |           |                                          |       |      |                            |          |         |         |         |      |
|         |     |      |       |          |         |         | % of     |           |                                          |       |      |                            |          |         |         |         |      |
|         |     |      |       |          | Total   | Ave.    | Total    | % of      |                                          |       |      |                            |          |         |         |         |      |
| Time    | Mon | Tues | Wed   | Thurs    | /hour   | /hour a |          | Day       |                                          |       |      |                            |          |         |         |         |      |
|         |     |      |       |          |         |         |          |           |                                          |       |      | 1-64 (                     | Freeway  | /Expres | sway)   |         |      |
| 5-6     |     |      | 258   | 250      | 508     | 254     |          |           |                                          |       |      |                            |          |         |         | % of    |      |
| 6-7     |     |      | 476   | 500      | 976     | 488     |          |           |                                          |       |      |                            |          | Total   | Ave.    | Total   | % of |
| 7-8     |     |      | 269   | 266      | 535     | 268     |          |           | Time                                     | Mon   | Tues | Wed                        | Thurs    | /hour   | /hour   | 8 hours | Day  |
| 8-9     |     |      | 229   | 234      | 463     | 232     |          |           | an a |       |      | 1997 - 1997<br>1997 - 1997 |          |         |         |         |      |
| 9-10    |     |      | 231   | 233      | 464     | 232     |          |           | 6-7                                      | 751   | 658  | 670                        | 652      | 2731    | 683     |         |      |
| 10-11   |     | 272  | 207   | 199      | 678     | 226     |          |           | 7-8                                      | 1316  | 1281 | 1219                       | 1238     | 5054    | 1264    |         |      |
| 11a-12p |     | 252  | 239   | 271      | 762     | 254     | 10%      | 6%        | 8-9                                      | 1135  | 1159 | 1046                       | 1066     | 4406    | 1102    |         |      |
| 12-1    |     | 231  | 264   | 220      | 715     | 238     | 9%       | 5%        | 9-10                                     | 1041  | 1054 | 1010                       | 1030     | 4135    | 1034    |         |      |
| 1-2     |     | 239  | 231   | 277      | 747     | 249     | 10%      | 6%        | 10-11                                    | 991   | 912  | 947                        | 995      | 3845    | 961     | 11%     | 6%   |
| 2-3     |     | 291  | 253   | 299      | 843     | 281     | 11%      | 6%        | 11a-12p                                  | 964   | 929  | 952                        | 1035     | 3880    | 970     | 11%     | 6%   |
| 3-4     |     | 415  | 509   | 439      | 1363    | 454     | 18%      | 10%       | 12-1                                     | 923   | 872  | 884                        | 970      | 3649    | 912     | 11%     | 5%   |
| 4-5     |     | 452  | 473   | 472      | 1397    | 466     | 18%      | 10%       | 1-2                                      | 963   | 935  | 961                        | 983      | 3842    | 961     | 11%     | 6%   |
| 5-6     |     | 337  | 345   | 325      | 1007    | 336     | 13%      | 7%        | 2-3                                      | 987   | 922  | 1074                       | 1105     | 4088    | 1022    | 12%     | 6%   |
| 6-7     |     | 280  | 296   | 286      | 862     | 287     | 11%      | 6%        | 3-4                                      | 1130  | 1077 | 1204                       | 1176     | 4587    | 1147    | 13%     | 7%   |
| 7-8     |     | 235  | 255   | 267      | 757     | 252     |          | <i>un</i> | 4-5                                      | 1243  | 1261 | 1287                       | 1380     | 5171    | 1293    | 15%     | 8%   |
| 8-9     |     | 160  | 175   | 202      | 537     | 179     |          |           | 5-6                                      | 1247  | 1373 | 1288                       | 1383     | 5291    | 1323    | 16%     | 8%   |
|         |     |      |       |          |         |         |          |           | 6-7                                      | 848   | 819  | 882                        | 997      | 3546    | 887     |         |      |
|         |     |      |       |          | 8 Hr    | 2565    |          | 1. A.A.   | 7-8                                      | 586   | 587  | 671                        | 777      | 2621    | 655     |         |      |
|         |     |      |       |          | 24 Hr   | 4491    |          |           | 8-9                                      | 554   | 497  | 556                        | 635      | 2242    | 561     |         |      |
|         |     |      |       |          |         |         |          |           |                                          |       |      |                            |          |         |         |         |      |
|         |     |      |       |          |         |         |          |           |                                          |       |      |                            |          | 8 Hr    | 8514    |         |      |
|         |     |      |       |          |         |         |          |           |                                          |       |      |                            |          | 5/ 11-  | 4/070   |         |      |

24 Hr 16872

### VI. <u>RESULTS</u>

Table 8 shows the peak one-hour and eight-hour carbon monoxide concentrations under "worst case" conditions at the 11 analysis sites. In all cases, the one-hour concentrations include background of six parts per million and eight-hour concentrations include background of three parts per million. In comparing the concentrations in the table with the NAAQS of 35 parts per million for one hour and nine parts per million for eight hours, it can be seen that in no case will the NAAQS be violated. In fact, in all cases, CO concentrations will be well below the NAAQS.

The analysis shows that the proposed bypass alternatives would have only slight effects on CO concentrations. Except at sites 4, 7, and 9, the bypass alternatives would increase CO levels only 0.1 parts per million above background levels. The higher levels at sites 4, 7, and 9 may be attributed to the added effects of traffic on existing roads. The maximum impact would occur at site 7, the McIntire Tennis Courts, where year 2010 build concentrations would increase over existing concentrations by 1.8 and 1.0 parts per million for one and eight hours respectively.

For site 6 on the expressway alternative, year 2010 build concentrations would not be substantially higher than either existing or year 2010 no-build concentrations.

Secondary analysis sites represent areas not directly affected by the project alternatives. However, in some cases, implementation of a particular

alternative could result in traffic volume increases on local roads that would not occur without that alternative. Sites 10 and 11 represent worst case secondary impact areas. As shown in the table, neither site will experience substantial air quality degradation as a result of implementation of any of the alternatives.

Sites 5, 7, and 8 represent school, outdoor recreation, and park areas. Site 5 at Greer Elementary School and site 8 representing Pen Park and Rivanna Park would experience only slight (0.1 parts per million) increases in CO concentrations. Site 7 at the McIntire Tennis Courts would experience greater increases, however, the resulting concentrations would still be well below the NAAQS.

### TABLE 8

| SITE # | YEAR/CASE                                                               |                                 | BACKGROUND                             |
|--------|-------------------------------------------------------------------------|---------------------------------|----------------------------------------|
|        |                                                                         | one hour                        | eight hour                             |
|        | 1987 BASE                                                               | 6.0                             | 3.0                                    |
|        | 2000 NO-BUILD                                                           | 6.0                             | 3.0                                    |
|        | 2000 BUILD                                                              | 6.1                             | 3.1                                    |
|        | 2010 NO-BUILD                                                           | 6.0                             | 3.0                                    |
|        | 2010 BUILD                                                              | 6.1                             | 3.1                                    |
| 2      | 1987 BASE<br>2000 NO-BUILD<br>2000 BUILD<br>2010 NO-BUILD<br>2010 BUILD | 6.0<br>6.0<br>6.1<br>6.0<br>6.1 | 3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0 |
| 3      | 1987 BASE                                                               | 6.0                             | 3.0                                    |
|        | 2000 NO-BUILD                                                           | 6.0                             | 3.0                                    |
|        | 2000 BUILD                                                              | 6.1                             | 3.0                                    |
|        | 2010 NO-BUILD                                                           | 6.0                             | 3.0                                    |
|        | 2010 BUILD                                                              | 6.1                             | 3.1                                    |
| 4      | 1987 BASE                                                               | 6.1                             | 3.1                                    |
|        | 2000 NO-BUILD                                                           | 6.2                             | 3.1                                    |
|        | 2000 BUILD                                                              | 6.2                             | 3.2                                    |
|        | 2010 NO-BUILD                                                           | 6.2                             | 3.1                                    |
|        | 2010 BUILD                                                              | 6.4                             | 3.2                                    |
| 5      | 1987 BASE<br>2000 NO-BUILD<br>2000 BUILD<br>2010 NO-BUILD<br>2010 BUILD | 6.0<br>6.0<br>6.1<br>6.0<br>6.1 | 3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0 |
| 6      | 1987 BASE                                                               | 9.1                             | 4.7                                    |
|        | 2000 NO-BUILD                                                           | 8.8                             | 4.5                                    |
|        | 2000 BUILD                                                              | 9.1                             | 4.8                                    |
|        | 2010 NO-BUILD                                                           | 9.1                             | 4.7                                    |
|        | 2010 BUILD                                                              | 9.4                             | 4.9                                    |
| 7      | 1987 BASE                                                               | 9.3                             | 4.9                                    |
|        | 2000 NO-BUILD                                                           | 8.8                             | 4.6                                    |
|        | 2000 BUILD                                                              | 9.8                             | 5.2                                    |
|        | 2010 NO-BUILD                                                           | 9.7                             | 5.2                                    |
|        | 2010 BUILD                                                              | 11.1                            | 5.9                                    |

### PEAK CARBON MONOXIDE CONCENTRATIONS (PARTS PER MILLION) UNDER WORST CASE METEOROLOGICAL CONDITIONS

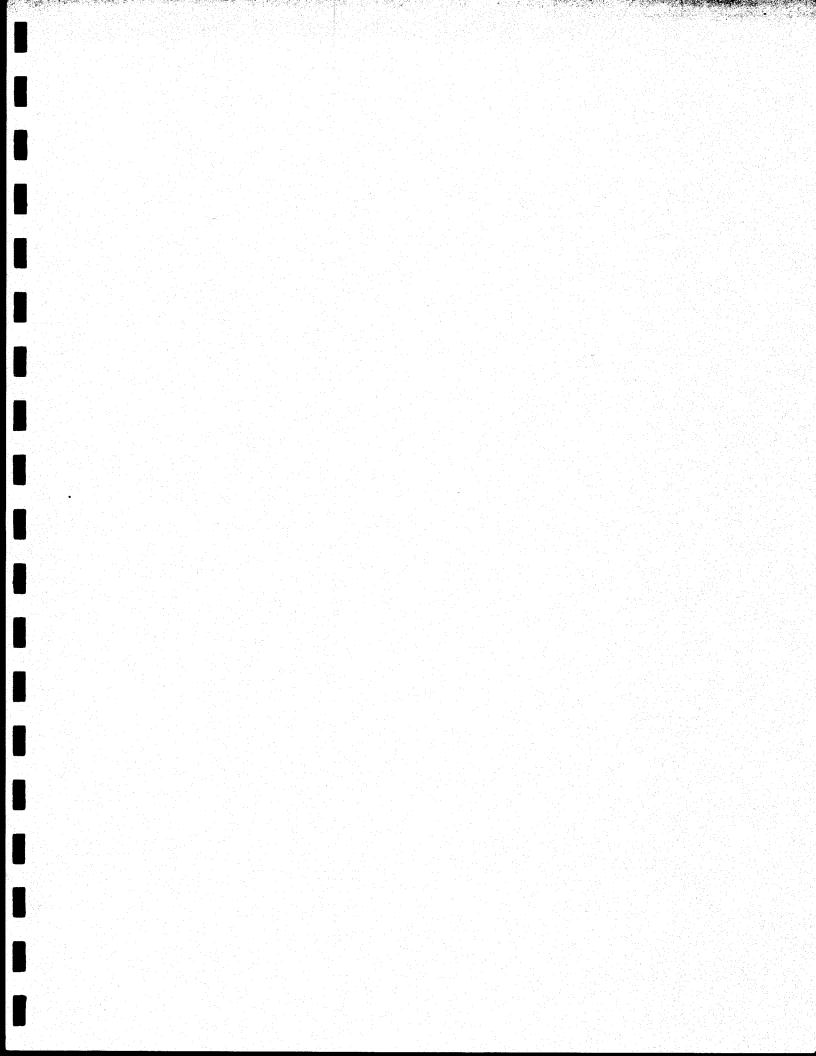
| 1987 BASE                                                               | 6.0                             | 3.0                                    |
|-------------------------------------------------------------------------|---------------------------------|----------------------------------------|
| 2000 NO-BUILD                                                           | 6.0                             | 3.0                                    |
| 2000 BUILD                                                              | 6.1                             | 3.0                                    |
| 2010 NO-BUILD                                                           | 6.0                             | 3.0                                    |
| 2010 BUILD                                                              | 6.1                             | 3.1                                    |
| 1987 BASE<br>2000 NO-BUILD<br>2000 BUILD<br>2010 NO-BUILD<br>2010 BUILD | 6.3<br>6.4<br>6.5<br>6.5<br>6.7 | 3.2<br>3.2<br>3.3<br>3.3<br>3.3<br>3.4 |
| 1987 BASE                                                               | 7.3                             | 3.7                                    |
| 2000 NO-BUILD                                                           | 7.4                             | 3.6                                    |
| 2000 BUILD                                                              | 7.5                             | 3.8                                    |
| 2010 NO-BUILD                                                           | 7.3                             | 3.7                                    |
| 2010 BUILD                                                              | 7.6                             | 3.9                                    |
| 1987 BASE                                                               | 6.5                             | 3.3                                    |
| 2000 NO-BUILD                                                           | 6.3                             | 3.2                                    |
| 2000 BUILD                                                              | 6.4                             | 3.2                                    |
| 2010 NO-BUILD                                                           | 6.3                             | 3.2                                    |
| 2010 BUILD                                                              | 6.5                             | 3.3                                    |

### VII. CONSTRUCTION IMPACTS

Construction impacts on air quality would include exhaust emissions from construction equipment and dust generated by construction activities on disturbed earth. Additional emissions could be generated by burning of debris from clearing and grubbing operations. These impacts would be temporary and would be minimized by enforcement of construction specifications.

The Virginia Department of Transportation's <u>Road and Bridge Specifications</u> (January 1987) regulate construction procedures on all projects. The <u>Specifications</u> require the contractor to comply with all applicable laws, ordinances, regulations, orders, and decrees. This includes compliance with emissions standards for construction equipment and adherence to regulations for burning of materials from clearing and grubbing, demolition, or other operations.

The <u>Specifications</u> have been reviewed by the State Air Pollution Control Board and were found to conform with the State Implementation Plan. The <u>Specifications</u> prohibit burning of tires, asphaltic materials, used crankcase oil, or similar materials which produce dense smoke. Provisions will be included in the contract for allaying dust resulting from construction activities.


### VIII. CONCLUSION

Potential air quality impacts of the proposed project alternatives have been evaluated. The evaluation included a review of existing regional air quality and projections for future air quality, with particular attention to carbon monoxide. The carbon monoxide analysis shows the NAAQS for this pollutant will not be exceeded under any alternative considered.

The project is located in an area designated "attainment" for all automotive-related pollutants. The State Implementation Plan for the area includes no transportation control measures. Therefore, except for construction procedures, the conformity requirements of 23CFR770 do not apply.

Construction activities will be conducted in accordance with Virginia Department of Transportation <u>Specifications</u> which have been approved by the Virginia Department of Air Pollution Control as conforming with the State Implementation Plan. Temporary air quality impacts from construction are not expected to be significant.

In view of the above, the project is in conformance with the State Implementation Plan, and will not interfere with attainment and maintenance of the National Ambient Air Quality Standards.

